Mixtures of truncated basis functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixtures of truncated basis functions

In this paper we propose a framework, called mixtures of truncated basis functions (MoTBFs), for representing general hybrid Bayesian networks. The proposed framework generalizes both the mixture of truncated exponentials (MTEs) framework and the mixture of polynomials (MoPs) framework. Similar to MTEs and MoPs, MoTBFs are defined so that the potentials are closed under combination and marginal...

متن کامل

Learning Mixtures of Truncated Basis Functions from Data

In this paper we describe a new method for learning hybrid Bayesian network models from data. The method utilizes a kernel density estimator, which is in turn “translated” into a mixture of truncated basis functions-representation using a convex optimization technique. We argue that these estimators approximate the maximum likelihood estimators, and compare our approach to previous attempts at ...

متن کامل

Learning Conditional Distributions Using Mixtures of Truncated Basis Functions

Mixtures of Truncated Basis Functions (MoTBFs) have recently been proposed for modelling univariate and joint distributions in hybrid Bayesian networks. In this paper we analyse the problem of learning conditional MoTBF distributions from data. Our approach utilizes a new technique for learning joint MoTBF densities, then propose a method for using these to generate the conditional distribution...

متن کامل

Incorporating Prior Knowledge when Learning Mixtures of Truncated Basis Functions from Data

A quick recall of how of how to do approximations in R n : 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 We want to approximate the vector f = (3, 2, 5) with A vector along e 1 = (1, 0, 0). A quick recall of how of how to do approximations in R n : 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 We want to approximate the vector f = (3, 2, 5) with A vector along e 1 = (1, 0, 0). Best choice is f , e 1 · e 1 = (3, 0,...

متن کامل

Parameter Estimation in Mixtures of Truncated Exponentials

Bayesian networks with mixtures of truncated exponentials (MTEs) support efficient inference algorithms and provide a flexible way of modeling hybrid domains. On the other hand, estimating an MTE from data has turned out to be a difficult task, and most prevalent learning methods treat parameter estimation as a regression problem. The drawback of this approach is that by not directly attempting...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Approximate Reasoning

سال: 2012

ISSN: 0888-613X

DOI: 10.1016/j.ijar.2011.10.004